Refinement	
Refinement on F^2	$(\Delta/\sigma)_{\rm max} < 0.001$
R(F) = 0.0466	$\Delta \rho_{\rm max} = 1.117 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.1225$	$\Delta \rho_{\rm min} = -1.548 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.056	Atomic scattering factors
3383 reflections	from International Tables
208 parameters	for Crystallography (1992,
H-atom parameters not	Vol. C, Tables 4.2.6.8 and
refined	6.1.1.4)
$w = 1/[\sigma^2(F_o^2) + (0.0534P)^2]$	
where $P = (F_o^2 + 2F_c^2)/3$	

Table	1.	Fract	tional	atomic	coordinates	and	equival	lent
		isotro	pic dis	splacem	ent paramet	ers (Å	²)	

$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$

	x	у	Z	U_{eq}
WI	0.08068 (5)	0.27828 (4)	0.12315 (6)	0.0332 (2)
C11	-0.4299 (4)	0.5992 (3)	0.1666 (5)	0.0744 (11)
01	-0.0950 (8)	0.2970 (6)	0.2167 (9)	0.040 (2)
O2	0.0194 (8)	0.4375 (7)	0.2056 (9)	0.043 (2)
03	-0.0015 (9)	0.3083 (6)	-0.0824 (9)	0.040 (2)
04	0.0651 (8)	0.1372 (7)	0.0035 (8)	0.040 (2)
05	0.2140 (8)	0.2111 (6)	0.2915 (8)	0.036 (2)
06	0.2757 (8)	0.2879 (6)	0.1072 (9)	0.040 (2)
C1	-0.1522 (13)	0.4023 (9)	0.3185 (13)	0.042 (3)
C2	-0.1273 (13)	0.4875 (10)	0.2512 (14)	0.045 (3)
C3	-0.2459 (15)	0.5189 (11)	0.1094 (15)	0.053 (3)
C4	-0.1392 (16)	0.2649 (13)	-0.3443 (15)	0.066 (4)
C5	-0.0031 (14)	0.2200 (12)	-0.2192 (14)	0.050 (3)
C6	-0.0268 (12)	0.1275 (10)	-0.1516 (13)	0.039 (3)
C7	0.0334 (17)	0.0085 (11)	-0.2459 (15)	0.057 (3)
C8	0.1499 (16)	0.1863 (13)	-0.2731 (16)	0.063 (4)
C9	-0.1927 (13)	0.1484 (12)	-0.1354 (14)	0.051 (3)
C10	0.4576 (16)	0.1717 (12)	0.4707 (14)	0.058 (3)
C11	0.3803 (13)	0.1772 (9)	0.3013 (13)	0.040 (3)
C12	0.4044 (12)	0.2698 (10)	0.2351 (14)	0.043 (3)
C13	0.5530 (14)	0.2321 (13)	0.1689 (17)	0.064 (4)
C14	0.4257 (15)	0.0604 (11)	0.1991 (16)	0.058 (4)
C15	0.3942 (16)	0.3772 (11)	0.3536(16)	0.060 (4)

Table 2. Selected geometric parameters (Å, °)

	-	-	
W1-01	1.930(7)	01C1	1.431 (13)
W1-02	1.930 (8)	O2—C2	1.407 (13)
W1-04	1.890 (8)	O3—C5	1.433 (15)
W1-03	1.892 (7)	O4—C6	1.434 (12)
W1-05	1.897 (7)	O5-C11	1.445 (13)
W1-06	1.905 (7)	O6-C12	1.438 (13)
Cl1C3	1.791 (12)		
01	78.5 (3)	O3—W1—O6	90.0 (3)
01—W1—03	106.1 (3)	04—W1—05	90.7 (3)
01-W1-04	90.0 (3)	O4—W1—O6	106.9 (3)
01—W1—05	89.3 (3)	O5-W1-O6	78.3 (3)
01W106	158.9 (3)	C1-01-W1	117.1 (6)
02-W1-03	88.4 (3)	C2-02-W1	118.1 (7)
02—W1—04	159.0 (3)	C5O3W1	121.6 (7)
02—W1—05	106.5 (3)	C6	120.6 (7)
02—W1—06	88.7 (3)	C11-05-W1	120.4 (6)
03—W1—04	77.9 (3)	C12-06W1	120.2 (6)
03-W1-05	160.7 (3)		

Non-H atoms were refined anisotropically. H atoms were included in idealized positions with fixed displacement parameters (1.2 times the displacement parameter of the host atom). The tertiary C-H distances were fixed at 0.98 Å, the secondary C-H distances at 0.97 Å and the methyl group C-H distances at 0.96 Å. The largest maximum and minimum residual electron-density peaks were located about 1 Å from the W atom.

©1995 International Union of Crystallography Printed in Great Britain - all rights reserved

Data collection: TEXSAN (Molecular Structure Corporation, 1989). Cell refinement: TEXSAN. Data reduction: TEXSAN. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976). Software used to prepare material for publication: SHELXL93.

This work was supported by the NESTE Foundation.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1247). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Chisholm, M. H., Parkin, I. P., Streib, W. E. & Eisenstein, O. (1994). Inorg. Chem. 33, 812-815.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lehtonen, A. & Sillanpää, R. (1994). Polyhedron, 13, 2519-2524.
- Molecular Structure Corporation (1989). TEXSAN. TEXRAY Single Crystal Structure Analysis Software. Version 5.0. MSC, 3200 Reseach Forest Drive, The Woodlands, TX 77381, USA.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
- Scherle, J. & Schröder, F. A. (1974). Acta Cryst. B30, 2772-2775.
- Schrock, R. R., DePue, R. T., Feldman, J., Schaverien, C. J., Dewan, J. C. & Liu, A. H. (1988). J. Am. Chem. Soc. 110, 1423-1435.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.

Acta Cryst. (1995). C51, 1271-1275

Diagua(5.10,15,20-tetraphenylporphinato)iron(III) Perchlorate, $[Fe(C_{44}H_{28}N_4)(H_2O)_2]ClO_4$

BEISONG CHENG AND W. ROBERT SCHEIDT

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA

(Received 19 October 1994; accepted 23 January 1995)

Abstract

The crystal structure of a new crystal form of [Fe(TPP)(H₂O)₂]ClO₄ has been determined. The asymmetric unit contains one molecule in a general position and a half molecule with required inversion symmetry. The two independent molecules have almost identical average values for the equatorial Fe-N_p bond lengths [2.029(4) and 2.028(6)Å], and the axial Fe-O bond lengths are 2.140 (2) and 2.121 (3) Å for molecule 1 (in a general position) and 2.126 (2) Å for molecule 2 (in a special position). A brief comparison of the core structure and hydrogen-bonding environment of this molecule with two other crystal forms is described.

Comment

We have recently reported the synthesis and characterization of a five-coordinate aqua(octaethylporphinato)iron(III) complex, [Fe(OEP)(H₂O)]ClO₄ (Cheng *et al.*, 1994). In our attempted synthesis of the tetraphenylporphyrin derivative, we isolated the title compound, (I), in a new crystal form (space group $P2_1/n$, Z = 6). The structure of tetrahydrofuran solvated [Fe(TPP)(H₂O)₂]ClO₄ has been reported (Scheidt, Cohen & Kastner, 1979), and that of a non-solvated form (space group $P2_1/n$, Z = 2) has also been determined (Ceccio, 1988).

ORTEPII (Johnson, 1976) diagrams with labeling schemes for 1 and 2 are shown in Fig. 1. The average values for the unique chemical classes of distances and angles in the porphinato cores and the perpendicular displacements of each atom from the mean plane of the 24-atom core are given in Fig. 2. The agreement between chemically equivalent bond distances and angles in the two independent molecules is quite satisfactory. The average Fe-N_p bond lengths for the two molecules are the same [2.029 (4) and 2.028 (6) Å in 1 and 2, respectively] and the axial Fe-O bond lengths are slightly different [2.140(2) for Fe(1)-O(1), 2.121 (3) for Fe(1)—O(2) and 2.126 (2) Å for Fe(2)— O(7)]. Hydrogen-bonding interaction is found between the agua ligands and the O atoms of the perchlorate anions with an $O \cdots O$ distance *ca* 2.8 Å.

The coordination geometry of this new crystal form is very close to that of the previously determined nonsolvated form (Ceccio, 1988) in which the Fe—N_p and Fe—O bond lengths were found to be 2.024 (7) and 2.142 (5) Å, respectively; however, it is quite different from that of the tetrahydrofuran solvated form (Scheidt, Cohen & Kastner, 1979) which shows a more expanded porphinato core [Fe—N_p 2.045 (8) Å] and a shorter axial Fe—O bond length of 2.095 (2) Å. Another important difference between the non-solvated and the tetrahydrofuran solvated form is the nature of the hydrogen bonding: in both non-solvated forms, each aqua ligand has only one hydrogen-bonding interaction with the

Fig. 1. ORTEPII (Johnson, 1976) diagrams of (a) molecule 1 and (b) molecule 2 of $[Fe(TPP)(H_2O)_2]^+$ with their labeling schemes. Displacement ellipsoids are drawn at the 50% probability level. Porphyrin H atoms are omitted for clarity.

perchlorate anion, the $O \cdots O$ distance is 2.8 Å for this new form. However, in the tetrahydrofuran solvated form, two hydrogen bonds were observed for each aqua ligand with an average $O \cdots O$ distance of 2.9 Å. We believe the difference in the core structure is related to the difference in hydrogen bonding. An increase in the hydrogen-bonding interaction (from the non-solvated forms to the tetrahydrofuran solvated form) leads to a decreased axial ligand field, which influences the nature of the spin state of the iron center and consequently leads to porphinato core expansion and shortening of the axial Fe—O bond length.

There is an interesting relationship between our cell and that reported by Ceccio (1988), with only the *b* axis showing significant differences. The present cell has b = 24.092 (1) Å (127 K) while that of Ceccio (1988) has b = 7.986 (6) Å (20 K). Both are in space group $P2_1/n$. The cell of Ceccio (1988) would appear to be an approximate subcell of the current one. Note that the vector between Fe(1) and Fe(2) is (~0, 1/3, ~0). We note that we have obtained the same cell for several crystalline specimens both at room temperature and at 127 K. Strouse (private communications) suggests that the difference in unit cells may arise from the crystalline solvent. He has observed that more polar solvents yield more ordered crystals of metalloporphyrins [Ceccio's (1988) crystals were obtained from CHCl₃, while ours were from CH_2Cl_2]. We also note that reflections of the k = 3n + 1 and 3n + 2 class are systematically weaker than those with k = 3n, but all classes are significantly above background.

C(m4) 10 107.5 (4) 126.6 (3) 1.378 (4) 2,029 90.0 (2) 6 C(m1) C(m3) 10 124.6 (4) 120,037 124.9 (5) 100^{1 (4)} 100,000 C(m2) (a) 1.436(4) .398 (2) 109.4 (5) ^{106.6} (6) 126.6 (3) 1.377 (3) 124.5 (6) 2,028 126.1 (A) C(*m*6) 90.0(2) 6 124.3 (7) 107.4 (2) 0 C(m5)

(b)

Fig. 2. Formal diagrams of the porphinato cores of [Fe(TPP)(H₂O)₂]-ClO₄ displaying the average value for the bond parameters. Values for molecules 1 and 2 are given in (a) and (b), respectively. The numbers in parentheses are the estimated standard deviations calculated on the assumption that the average values were all drawn from the same population. Also displayed are the perpendicular displacements, in units of 0.01 Å, of each atom from the 24-atom mean plane of the core. For 2, only the crystallographically unique values are given in the centrosymmetric diagram.

Experimental

The title compound was synthesized by the reaction of [Fe(TPP)]₂O in dichloromethane solution with an excess amount of aqueous perchloric acid (10%), and crystallized

from dichloromethane and hexanes. In our hands, this is the only crystal form isolated.

Crystal data

$[Fe(C_{44}H_{28}N_4)(H_2O)_2]ClO_4$
$M_r = 804.04$
Monoclinic
$P2_1/n$
a = 10.330(1) Å
b = 24.092(1) Å
c = 21.543(1) Å
$\beta = 97.89 (1)^{\circ}$
V = 5310.7 (6) Å ³
Z = 6
$D_{\rm x} = 1.508 {\rm Mg} {\rm m}^{-3}$

Data collection

Enraf-Nonius FAST areadetector diffractometer 'Brute force' scans Absorption correction: refined from ΔF (DIFABS; Walker & Stuart, 1983) $T_{\min} = 0.617, T_{\max} =$ 0.757

Refinement

Refinement on F^2 R(F) = 0.0684 $wR(F^2) = 0.1657$ S = 1.15611453 reflections 840 parameters Coordinates and U_{iso} of the H atoms of the water ligand refined; porphyrin H atoms idealized (riding model, C - H = 0.95 Å)

Mo $K\alpha$ radiation $\lambda = 0.71073 \text{ Å}$ Cell parameters from 250 reflections $\theta = 5.1 - 20.8^{\circ}$ $\mu = 0.561 \text{ mm}^{-1}$ T = 127 (2) KRectangular prism $0.55 \times 0.25 \times 0.25$ mm Black

31873 measured reflections 11466 independent reflections 7369 observed reflections $[I > 2\sigma(I)]$ $R_{\rm int} = 0.0809$ $\theta_{\rm max} = 28.16^{\circ}$ $h = -11 \rightarrow 13$ $k = -31 \rightarrow 28$ $l = -21 \rightarrow 28$

 $w = 1/[\sigma^2(F_o^2) + (0.0496P)^2$ + 3.4902P] where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = -0.011$ $\Delta \rho_{\rm max} = 1.051 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.561 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for Crystallography (1992. Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

 $U_{\rm iso}$ for O(3*a*) and O(5*b*); $U_{\rm eq} = (1/3)\sum_i \sum_j U_{ij} a_i^* a_i^* a_i \cdot a_j$ for others.

	x	у	z	U_{eq}/U_{iso}
Fe(1)	0.98928 (4)	0.16663 (2)	0.99755 (2)	0.01449 (14)
N(1)	0.9424 (2)	0.19501 (11)	0.90855 (12)	0.0170 (6)
N(2)	0.8906 (2)	0.23081 (11)	1.02990 (12)	0.0153 (6)
N(3)	1.0362 (2)	0.13805 (11)	1.08659 (12)	0.0166 (6)
N(4)	1.0881 (2)	0.10280 (11)	0.96491 (12)	0.0167 (6)
C(al)	0.9773 (3)	0.17182 (14)	0.85482 (15)	0.0179 (7)
C(a2)	0.8688 (3)	0.24146 (14)	0.89010 (15)	0.0181 (7)
C(a3)	0.8297 (3)	0.27355 (14)	0.99518 (15)	0.0173 (7)
C(a4)	0.8763 (3)	0.24099 (14)	1.09145 (14)	0.0171 (7)
C(a5)	1.0013 (3)	0.16119 (14)	1.14013 (14)	0.0172 (7)
C(a6)	1.1149 (3)	0.09283 (14)	1.10500 (15)	0.0165 (7)
C(a7)	1.1513 (3)	0.06030 (14)	0.99977 (15)	0.0184 (7)
C(a8)	1.1018 (3)	0.09195 (14)	0.90318 (15)	0.0181 (7)
C(b1)	0.9220 (3)	0.20406 (15)	0.80130 (15)	0.0206 (7)
C(b2)	0.8552 (3)	0.24582 (15)	0.82293 (15)	0.0206 (7)
C(b3)	0.7802 (3)	0.31295 (15)	1.0364 (2)	0.0206 (7)
C(b4)	0.8081 (3)	0.29266 (14)	1.0950 (2)	0.0197 (7)

[Fe(C44H28N4)(H2O)2]ClO4

C(LE)	1.0(00.(2)	0.12001.(1.4)	1 1024 (2)	0.010((7)				1 a)
C(b5)	1.0000(3)	0.13001 (14)	1.1934 (2)	0.0180(7)	Table 2. Sel	ected geome	etric parameters (A	A, °)
C(b0)	1.1300 (3)	0.08901(13)	1.1722(2)	0.0211(7)	O(1) - H(1a)	0.73 (7)	Fe(1)-N(3)	2.033 (3)
C(br)	1.1996 (3)	0.02104(13) 0.04075(14)	0.9382(2)	0.0209(7)	O(1) - H(1b)	0.95 (7)	Fe(1) - N(4)	2.025 (3)
C(bb)	1.1700 (3)	0.04073 (14)	0.0994(2) 0.85172(14)	0.0207(7)	O(2) - H(2a)	0.74 (7)	O(7) - H(7a)	0.70 (6)
$C(m^2)$	0.8160 (3)	0.12427(13) 0.27860(14)	0.03172(14)	0.0167(7)	O(2) - H(2b)	0.95 (8)	O(7) - H(7b)	0.89 (6)
C(m2)	0.0109(3)	0.27800(14) 0.20852(14)	1 14315(14)	0.0107(7)	Fe(1) - O(1)	2.140 (2)	Fe(2) - O(7)	2.126 (2)
C(m4)	1 1686 (3)	0.20032 (14)	1.06547 (15)	0.0178(7)	Fe(1)-O(2)	2.121 (3)	Fe(2)-N(5)	2.024 (3)
C(11)	1.0894 (3)	0.05002(14) 0.10755(14)	0.78940(15)	0.0170(7)	Fe(1) - N(1)	2.031 (3)	Fe(2)—N(6)	2.033 (3)
C(12)	0.9982(4)	0.0845(2)	0.7427(2)	0.0256 (8)	Fe(1)-N(2)	2.027 (3)		
C(13)	1.0341 (4)	0.0706(2)	0.6848(2)	0.0250(0)	$E_{0}(1) = O(1) = H(1_{0})$	109 (5)	$N(1) = E_{2}(1) = O(2)$	80 62 (10)
C(14)	1,1590 (5)	0.0797(2)	0.6733(2)	0.0367(10)	$F_{e}(1) = O(1) = H(1a)$	106. (3)	N(1) = Fe(1) = O(2) N(2) = Fe(1) = O(2)	01 14 (11)
C(15)	1.2516 (4)	0.1014(2)	0.7191(2)	0.0350 (10)	$F_{0}(1) = O(2) = H(2a)$	124. (4)	N(2) = Pe(1) = O(2) $N(3) = E_{0}(1) = O(2)$	91.14(11)
C(16)	1.2165 (4)	0.1148 (2)	0.7773 (2)	0.0268 (8)	Fe(1) = O(2) = H(2b)	122. (5)	N(3) = Pe(1) = O(2) N(4) = Fe(1) = O(2)	90.44 (10) 88.66 (11)
C(21)	0.7397 (3)	0.32718 (14)	0.90118 (15)	0.0179 (7)	H(1a) = O(1) = H(1b)	110 (6)	O(1) = Fe(1) = O(2)	179 74 (10)
C(22)	0.6078 (3)	0.3323 (2)	0.9067 (2)	0.0231 (8)	H(2a) = O(2) = H(2b)	98 (6)	$E_{e}(2) = O(7) = H(7a)$	111 (5)
C(23)	0.5370 (3)	0.3772 (2)	0.8804 (2)	0.0279 (8)	N(1) - Fe(1) - N(2)	90.10(11)	Fe(2) = O(7) = H(7b)	126. (4)
C(24)	0.5960 (3)	0.41766 (15)	0.8492 (2)	0.0237 (8)	N(1) - Fe(1) - N(3)	179.88 (6)	H(7a) - O(7) - H(7b)	104. (6)
C(25)	0.7268 (3)	0.4128 (2)	0.8431 (2)	0.0223 (7)	N(1) - Fe(1) - N(4)	89.67 (11)	$N(5) - Fe(2) - N(5^{i})$	179.996(1)
C(26)	0.7991 (3)	0.36768 (14)	0.86910 (14)	0.0191 (7)	N(2) - Fe(1) - N(3)	89.99 (11)	$N(5) - Fe(2) - N(6^{1})$	89.88 (11)
C(31)	0.8898 (3)	0.22587 (14)	1.20580 (15)	0.0201 (7)	N(2) - Fe(1) - N(4)	179.69 (11)	N(5)-Fe(2)-N(6)	90.12 (11)
C(32)	0.7631 (3)	0.2188 (2)	1.2187 (2)	0.0258 (8)	N(3) - Fe(1) - N(4)	90.25 (11)	N(5)—Fe(2)—O(7)	91.09 (11)
C(33)	0.7301 (4)	0.2321 (2)	1.2768 (2)	0.0335 (9)	N(1) - Fe(1) - O(1)	90.60 (10)	N(6)—Fe(2)—O(7)	89.27 (10)
C(34)	0.8228 (4)	0.2540 (2)	1.3226 (2)	0.0368 (10)	N(2) - Fe(1) - O(1)	88.96 (11)	N(5)-Fe(2)-O(7')	88.92 (11)
C(35)	0.9481 (4)	0.2629 (2)	1.3100 (2)	0.0348 (10)	N(3) - Fe(1) - O(1)	89.32 (10)	N(6)—Fe(2)—O(7 ⁱ)	90.73 (10)
C(36)	0.9826 (4)	0.2488 (2)	1.2518 (2)	0.0268 (8)	N(4)—Fe(1)—O(1)	91.24 (11)		
C(41)	1.2530 (3)	0.01039 (14)	1.0940 (2)	0.0186 (7)	Symm	netry code: (i) 2	2 - r (1 - v) (2 - z)	
C(42)	1.2038 (3) -	-0.03036 (15)	1.12986 (15)	0.0206 (7)	0,		,. ,,	
C(43)	1.2844 (3) -	-0.0741 (2)	1.1542 (2)	0.0247 (8)				
C(44)	1.4121 (4) -	-0.0767 (2)	1.1435 (2)	0.0310 (9)	Cell determination	and intensi	ity data collection	were per-
C(45)	1.4019(3) -	-0.0362 (2)	1.1085 (2)	0.0316 (9)	formed on an E	nraf-Nonius	FAST area-detecto	or diffrac-
C(40)	1.3832 (3)	0.0075(2) 0.11860(11)	1.0833(2)	0.0234 (8)	tometer with an M	lo rotating a	node source using	MADNES
O(1)	1 1639 (2)	0.11800(11) 0.21400(12)	0.98893(13)	0.0217(6)	(Massamakusin R	Delivered	1007 Ource, using	MADNES
$C(1a)^{\dagger}$	0.4942(2)	0.21400 (12)	0.00570 (8)	0.0242(0)	(Messerschmitt &	Phugrain,	1987). Our detailed	1 methods
$O(3a)^{\dagger}$	0.3909(11)	0.10114(0) 0.1474(5)	0.9913 (6)	0.0204(4)	and procedures for	or small mo	olecule X-ray data	collection
$O(4a)^{+}$	0.5805 (5)	0.1474(3) 0.1733(2)	0.9501(2)	0.154(4)	with the FAST	system have	e been described	previously
$O(5a)^{\dagger}$	0.5821 (7)	0.1756 (3)	1.0526 (3)	0.002(2)	(Scheidt & Turows	ska-Tvrk, 19	94). The structure y	vas solved
$O(6a)^{\dagger}$	0.4498 (4)	0.2374(2)	0.9891(2)	0.0423(11)	by SHELYSSE (Sh	oldrick 108	5) and refined by (
Cl(1b)t	0.4920 (6)	0.1548 (3)	0.9990 (4)	0.073(2)	(C) 1121 1002)	C	5) and renned by 3	SHELAL95
$O(3b)^{+}$	0.3922 (9)	0.1559 (4)	1.0370 (6)	0.075(2)	(Sheldrick, 1993).	One and a	half molecules w	vere found
$O(4b)^{+}$	0.3993(14)	0 1490 (5)	0.9418 (6)	0.062(4)	in an asymmetric	cell with th	e first molecule in	a general
$O(5b)^{+}$	0.567 (5)	0.198(2)	0.9410(0)	0.002(4)	position and the se	cond molecu	le possessing a sym	metry cen-
O(6b)t	0.548 (2)	0.1015 (11)	1.0106 (10)	0.141(10)	ter imposed on its	iron(III) ato	m Two sets of geo	metries (a
Fe(2)	1	1/2	1	0.0140 (2)	and b) successions	Inon(III) ato	Ent a sublimit	incures (a
N(5)	0.9025 (2)	0.56412 (12)	1.03285 (12)	0.0160 (6)	and b) were resol	ived for the	nrst perchiorate a	nion, their
N(6)	0.9564 (2)	0.52982 (12)	0.91132 (12)	0.0157 (6)	occupancy factors	[0.712 (5) a	nd 0.288 (5)] were	refined by
C(a9)	0.8870 (3)	0.57437 (14)	1.09415 (14)	0.0161 (7)	the least-squares p	rocess; anoth	ner perchlorate anior	n was dis-
C(a10)	0.8411 (3)	0.60721 (14)	0.99818 (14)	0.0164 (7)	ordered around an	inversion ce	nter. Since the two	disordered
C(a11)	0.8826 (3)	0.57613 (14)	0.89319 (14)	0.0160 (7)	groups for the first	nerchlorate	anion were very cl	ose $O(3a)$
C(a12)	0.9925 (3)	0.50682 (14)	0.85784 (14)	0.0162 (7)	O(5k) and $O(5k)$	at he sefered	amon were very en	OSC, O(Du)
C(b9)	0.8188 (3)	0.62566 (14)	1.09840 (15)	0.0189 (7)	and $O(5D)$ could no	ot be renned	anisotropically and	thus were
C(b10)	0.7907 (3)	0.64601 (15)	1.03941 (15)	0.0201 (7)	included as isotrop	pic contribut	ors. All H atoms o	of the por-
C(b11)	0.8719 (3)	0.58159 (15)	0.82614 (14)	0.0203 (7)	phyrin macrocycles	s were idealiz	zed with the standar	d methods
C(b12)	0.9394 (3)	0.53960 (15)	0.80461 (15)	0.0198 (7)	in SHELXL93 and	l included in	the least-squares	process as
C(m5)	0.8293 (3)	0.61277 (14)	0.93314 (15)	0.0167 (7)	fixed contributors:	however the	H atoms of the ad	ua ligande
C(mb)	1.0669 (3)	0.458/1 (14)	0.85414 (14)	0.0165 (7)	were located from	difference E	Courier cunthesis on	d isotroni
C(51)	0.7307(3)	0.00080 (14)	0.90453 (14)	0.0160(7)		unificience r	ouner synthesis and	a isonopi-
C(52)	0.0184(3)	0.0033 (2)	0.9099 (2)	0.0235 (8)	cally refined in the	e least-square	s process.	
C(53)	0.5405 (5)	0.7101(2)	0.8642 (2)	0.0279(8)	Molecular graph	nics: ORTEP	Π (Johnson, 1976).	. Software
C(54)	0.0044 (3)	0.7311(2)	0.8333(2)	0.0204 (8)	used to prepare ma	terial for pul	blication: SHELXL9	3.
C(56)	0.7555 (5)	0.7474(2) 0.70200(14)	0.87745(15)	0.0233(8)	• •	•		
C(61)	1 1020 (3)	0.70200(14) 0.44186(14)	0.79174 (15)	0.0192(7)	XV. (1 1 1 X	T		
C(62)	1.0097 (3)	0.4197(2)	0.7453(2)	0.0254 (8)	we thank the P	National Inst	intuities of Health fo	or support
C(63)	1.0455 (4)	0.4057(2)	0.6874(2)	0.0309 (9)	of this research	under gra	int GM-38401. F	funds for
C(64)	1.1726 (4)	0.4139 (2)	0.6755 (2)	0.0328 (9)	the purchase of t	the FAST a	rea detector diffr	actometer
C(65)	1.2641 (4)	0.4355 (2)	0.7221 (2)	0.0298 (9)		nough NITT	amont DD 06700	Wa the
C(66)	1.2293 (3)	0.44907 (15)	0.7799 (2)	0.0217 (7)	were provided th	rougn NIH	grant KK-06/09.	we mank
O(7)	1.1761 (2)	0.54675 (12)	1.01032 (13)	0.0222 (6)	Professor Strouse	e for an inte	resting discussion	
Cl(2)	1.5056 (2)	0.51573 (7)	1.00138 (11)	0.0273 (5)			~	
O(8)	1.558 (2)	0.4984 (8)	0.9527 (6)	0.182 (11)				
O(9)	1.4626 (6)	0.5719 (3)	0.9916 (3)	0.0453 (15)	Lists of structure fa	ctors, anisotro	pic displacement para	ameters, H-
O(10)	1.6048 (8)	0.5119 (3)	1.0535 (5)	0.067 (2)	atom coordinates and	i complete geo	ometry have been dep	osited with
O(11)	1.3994 (7)	0.4849 (4)	1.0227 (9)	0.116 (7)	the IUCr (Reference:	BK1091). Cop	pies may be obtained t	hrough The
	+ 0-	amou factor f	712 (6)		Managing Editor, Int	ternational Un	ion of Crystallography	y, 5 Abbey
f Occupancy factor = 0.712 (5). Square, Ch					Square, Chester CH1	2HU, England	i.	

† Occupancy factor = 0.712 (5). ‡ Occupancy factor = 0.288 (5).

References

- Ceccio, S. M. (1988). MS thesis, Univ. of California, Los Angeles, USA.
- Cheng, B., Safo, M. K., Orosz, R. D., Reed, C. A., Debrunner, P. G. & Scheidt, W. R. (1994). *Inorg. Chem.* 33, 1319-1324.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Messerschmitt, A. & Pflugrath, J. W. (1987). J. Appl. Cryst. 20, 306– 315.
- Scheidt, W. R., Cohen, I. A. & Kastner, M. E. (1979). Biochemistry, 18, 3546–3552.
- Scheidt, W. R. & Reed, C. A. (1981). Chem. Rev. 81, 543-555.
- Scheidt, W. R. & Turowska-Tyrk, I. (1994). Inorg. Chem. 33, 1314-1318.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. Univ. of Göttingen, Germany.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1995). C51, 1275-1278

A Hexacobalt Sulfide Cluster Compound, [Co₆(µ-S)₈(PPh₃)₆].2PPh₃.2C₂H₄Cl₂.H₂O

Feilong Jiang,* Xiaoying Huang, Rong Cao, Maochun Hong and Hanqin Liu

State Key Laboratory of Structural Chemistry and Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China

(Received 1 June 1994; accepted 20 December 1994)

Abstract

The title compound, octa- μ_3 -thio-hexakis(triphenylphosphine)-octahedro-hexacobalt-triphenylphosphine-1,2-dichloroethane-water (1/2/2/1), $[Co_6S_8(C_{18}H_{15}P)_6]$. 2C₁₈H₁₅P.2C₂H₄Cl₂.H₂O, was prepared by the reaction of $CoCl(PPh_3)_3$ with Na(mpo) (mpo = 2mercaptopyridine N-oxide) or NaS'Bu. The molecular structure consists of discrete cluster units interspersed with molecules of free triphenylphosphine and solvent. The neutral cluster contains a slightly distorted Co₆ octahedron with each triangular face symmetrically capped by a μ_3 -S ligand. The molecular structure possesses a crystallographic inversion centre. The average Co-Co, Co-S and Co-P bond distances are 2.87 (6), 2.24 (1) and 2.162 (7) Å, respectively. The hexacobalt sulfide cluster compound was formed via the capture of S atoms from thiolate reactants.

Comment

The title hexacobalt cluster compound, (I), consists of discrete $[Co_6(\mu_3-S)_8(PPh_3)_6]$ cluster units inter-

spersed with molecules of free triphenylphosphine, dichloroethane and water. The neutral cluster contains a slightly distorted Co₆ octahedron with each triangular face symmetrically capped by a μ_3 -S ligand. The six Co atoms are each terminally coordinated by one triphenylphosphine ligand. Therefore, each Co atom is surrounded by four S atoms and one P atom in a distorted square-pyramidal environment, along with another four Co atoms. The cluster could also be described as a slightly distorted S₈ cube with the Co atoms in facecentred positions. The molecular structure possesses a crystallographic inversion centre within the Co₆ core.

The mean Co-Co distance in the title complex, 2.87 (6) Å, is longer than in the cation $[Co_6S_8(PPh_3)_6]^+$ (2.81 Å; Fenske, Hachgenei & Ohmer, 1985) or in [Co₆S₈(PEt₃)₆] (2.81 Å; Cecconi, Ghilardi, Midollini & Orlandini, 1983), while the mean Co-S distance [2.24(1) Å] is similar to that in $[Co_6S_8(PPh_3)_6]^+$ (2.22 Å) and $[Co_6S_8(PEt_3)_6]$ (2.23 Å). It seems that the Co-Co bond lengths are affected by a change in the cluster charge or the phosphine ligands. The Co-S bonds also appear to make an important contribution to the stability of the cluster framework. The Co-Co-Co bond angles fall within the ranges 59.15(5)-60.56(5) and $88.87(6)-91.13(6)^\circ$, and are comparable with the values of 60 and 90° for perfect octahedral symmetry. It is interesting that the uncoordinated triphenylphosphine molecules act as solvate molecules and lie outside the neutral [Co₆S₈(PPh₃)₆] units, as shown in Fig. 2.

The title compound was synthesized via a novel route in which the sulfide ligands were obtained indirectly. To date, polynuclear metal sulfides have been prepared by using inorganic sulfur salts as the sulfide source (Fenske, Hachgenei & Ohmer, 1985). Recently, we have found that using Co¹⁺ and thiolates or dithiolates leads to the isolation of polycobalt sulfides such as [Co₄S(SCH₂CH₂S)₃(PPh₃)₃Cl] (Jiang, Huang, Wu, Kang, Hong & Liu, 1993) or $[Co_7S_6(PPh_3)_{7-n}X_n]$ (n = 1, 3; X = Br, Cl) (Jiang, Lei, Hong, Huang, Kang & Liu, 1993). These reactions are of particular interest where the sulfide ligands are obtained indirectly. Substitution of mpo⁻ (2-mercaptopyridine N-oxide) or S'Bu for the thiolates leads to the title compound. This reaction also shows that under appropriate conditions (long reaction times, for instance) the S atoms dissociate completely from the thiolates and are incorporated into the